Florence-2 is an innovative vision foundation model capable of understanding text prompts and performing a variety of tasks including image captioning, object detection, and segmentation. It was trained on a large dataset called FLD-5B, which contains over 126 million images and 5.4 billion annotations, enabling the model’s multi-task learning.
Florence-2 boasts exceptional OCR capabilities, particularly in recognizing handwritten text.
Florence-2 Usage Scenario
The Florence-2 vision model supports multiple tasks such as image captioning, object detection, image segmentation, OCR, and more. The list of supported tasks is shown in the image below:
OCR
OCR with Region
Object Detection
Detailed Caption
Online demo: https://huggingface.co/spaces/gokaygokay/Florence-2
Florence-2 Model Information:
- Florence-2-base
- Florence-2-large
- Florence-2-base-ft
- Florence-2-large-ft
Getting Started with Florence-2
The model can perform different tasks by modifying the prompt. First, let’s define a function to run prompts.
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
def run_example(task_prompt, text_input=None):
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
print(parsed_answer)
Then set the prompt to perform the corresponding task:
python prompt = "<CAPTION>"
run_example(prompt)
Paper: https://arxiv.org/abs/2311.06242